Demonstration of dynamic thermal compensation for parametric instability suppression in Advanced LIGO
نویسندگان
چکیده
منابع مشابه
Observation of Parametric Instability in Advanced LIGO.
Parametric instabilities have long been studied as a potentially limiting effect in high-power interferometric gravitational wave detectors. Until now, however, these instabilities have never been observed in a kilometer-scale interferometer. In this Letter, we describe the first observation of parametric instability in a gravitational wave detector, and the means by which it has been removed a...
متن کاملFirst Demonstration of Electrostatic Damping of Parametric Instability at Advanced LIGO.
Interferometric gravitational wave detectors operate with high optical power in their arms in order to achieve high shot-noise limited strain sensitivity. A significant limitation to increasing the optical power is the phenomenon of three-mode parametric instabilities, in which the laser field in the arm cavities is scattered into higher-order optical modes by acoustic modes of the cavity mirro...
متن کاملAdaptive thermal compensation of test masses in advanced LIGO
As the first generation of laser interferometric gravitational wave detectors near operation, research and development has begun on increasing the instrument’s sensitivity while utilizing the existing infrastructure. In the Laser Interferometer Gravitational Wave Observatory (LIGO), significant improvements are being planned for installation in ∼2007, increasing strain sensitivity through impro...
متن کاملsuppression of coke formation in thermal cracking by coke inhibitors
the main purpose of this research was to:1.develop a coking model for thermal cracking of naphtha.2.study coke inhibition methods using different coke inhibitors.developing a coking model in naphtha cracking reactors requires a suitable model of the thermal cracking reactor based on a reliable kinetic model.to obtain reliable results all these models shall be solved simultaneously.for this pu...
15 صفحه اولThermal modelling of Advanced LIGO test masses
High-reflectivity fused silica mirrors are at the epicentre of today’s advanced gravitational wave detectors. In these detectors, the mirrors interact with high power laser beams. As a result of finite absorption in the high reflectivity coatings the mirrors suffer from a variety of thermal effects that impact on the detectors’ performance. We propose a model of the Advanced LIGO mirrors that i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Classical and Quantum Gravity
سال: 2020
ISSN: 0264-9381,1361-6382
DOI: 10.1088/1361-6382/ab8be9